• Unit Weight UW (Bulk Density)

The actual mass that would fill a container of unit volume. This is used to convert quantities by mass to quantities by volume.

UW= measure the volume that the graded aggregate will occupy in concrete and includes the solid aggregate particles and the voids between them.

Bulk Density Reflects:

- Packing of Aggregate
- Size distribution
- Shape of Aggregate particles.
- Degree of compaction: Loose, Fully compacted

UW of aggregate influence the UW of concrete.

• Unit Weight UW (Bulk Density)

-Compacted unit weight: fill in 3 layers, compact each layer
25 times using tamping rod, and level the surface then weigh the container.
-Loose unit weight: fill the container, and level the surface then weigh the container.

$$UW_{\text{bulk}} = \frac{W_{Compacted or \ Loose \ Aggregate}}{V_{S \ tan \ dard \ Cylinder}}$$

Grading (Sieve Analysis)

It is the process of dividing a sample of aggregate into fractions of same size. Its purpose is to determine the grading or size distribution of the aggregate. General sieve Sizes are shown in Table.

Particle size: considered to be the size of the smallest sieve opening through which the sample passes.

Grading Curves: The results of sieve analysis can be presented in a graphical form after this process (sieve analysis) is performed in a tabular form.

Methods: ASTM C 136 Objective: Determine Percentages Passing of Each individual Aggregate Size.

Sample: See Table

Specifications: ASTM C33 Limitations Maximum Size- Structural Concrete ≤ 25 mm

Series of Coarse Aggregate Sizes

Series of Fine Aggregate Sizes

9.5 mm

#4

#8

#16

30

50

100

Pan

Sample Calculation: Fine Aggregate

Sieve	Retained (Grams)	Retained (%)	%CR	%CP
# 4	0	0	0	100
# 8	100	10	10	90
# 16	100	10	20	80
# 30	450	45	65	35
# 50	200	20	85	15
# 100	130	13	98	2
Pan	20			
Total	1000		278	

Fig. 5-6. Curves indicate the limits specified in ASTM C 33 for fine aggregate and for one commonly used size number (grading size) of coarse aggregate.

Maximum Aggregate Size

D_{max}: Designated as the smallest sieve through which 100% of the aggregate sample particles pass.

 $D_{nominal}$: Designated as the largest sieve that retains some of the aggregate particles, but generally not more than 15%.

A. Structural concrete

- Larger Dmax \rightarrow Less water \rightarrow lower w/c \rightarrow Higher Strength

-Very large Dmax \rightarrow lower bond area \rightarrow Discontinuities introduced by large Particles \rightarrow strength \downarrow

Dmax is controlled by: Spacing between steel bar; Note: Use Dmax < 1 1/2" (40 mm)

ASTM C 33 Requirements

Coarse Aggregate

Sieve	%CP	%CP- ASTM
25 mm	100	100
19 mm	90	90-100
12.5 mm	50	20-55
9.5 mm	20	<mark>0-15</mark>
# 4	5	0-5

Max Size = 25 mm Nominal Size = 19 mm

Fine Aggregate

Sieve	%CP	%CP- ASTM
# 4	100	95-100
# 8	90	80-100
# 16	80	50-85
# 30	35	25-60
# 50	15	10-30
# 100	2	2-10

Max Size = # 4 Nominal Size = # 8 **Fineness Modulus of Fine Aggregate:**

Methods: ASTM 125

Fineness Modulus (FM): Sum of Percentage Cumulative Retained on Standard Sieves # 4, # 8, # 16, # 30, # 50, & # 100 Divided by 100.

Specifications: $2.3 \le FM \le 3.1$

Violation of 0.25 is Allowed

Sample Calculation (previous example): FM = 278/100 = 2.8

Grading Requirements

No ideal grading can be recommended because of interacting influences of the main influencing factors on workability:

1- The surface area of aggregate. Low Specific Surface \rightarrow low water & cement requirement Strength & low Price. But, Fines are needed for lubrication (workability).

2. Relative volume occupied by aggregate: High (%) \rightarrow High Density \rightarrow less voids (less filler: Cement + FA). But, Paste and/or Mortar are needed for lubrication.

Grading Requirements

3:- Tendency to Segregation -Preventing mortar from Passing outs of voids (between coarse aggregate).

4- Amount of Fines in the Mix -Mix should contain materials smaller than 300 μ m to get satisfactory workable mix

-Practical Grading

Use aggregate with a grading such that a reasonable workability and minimum segregation are obtained in order to produce strong and economical concrete

Types of Grading -Single Sized -Poorly Graded -Well-Graded -Gap-Graded

Figure 6-13. For equal absolute volumes when different sizes are combined, the void-content decreases, thus the necessary paste content decreases.

^{*} This effect is independent of aggregate size. The voids are smaller, but the volume of voids is nearly the same (and high) when a single-size fine aggregate is used compared to a coarse aggregate. For the idealized case of spheres, the void volume is about 36% regardless of the size of particles.

Figure 6-8. Range of particle sizes found in aggregate for use in concrete.

Impurities in Aggregates:

Deleterious Substances

- Impurities: Interfers with the process of hydration of cement.
- Coatings: Prevent the development of good bond between aggregate and cement paste.
- Weak & Unsound Particles.
- Aggregate containing sulphate or chloride Salts

Organic Impurities

Organic matter consists of products of decay of vegetable matter in the form of humus or organic loam, usually present in sand.

\uparrow Dark \rightarrow Organic Content \uparrow

No darker than yellow color \rightarrow harmless organic impurities Darker than standard \rightarrow harmful organic impurities **Clay and Other Fine Material**

-Present in the form of surface coating and/or loose materials that could :

- (a) Reduce bond strength.
- (b) Increase water demand.

Salt Contamination

Sand from seashore or rivers estuary contains > 6% (by mass) Salt

- If not washed by water salt	\rightarrow Cause reinforced steel corrosion			
existence in concrete could:	\rightarrow Absorption of moisture from air thus	З,		
	causing efflorescence; white deposits o	n		
	concrete surface			

Table shows allowable contents of different impurities (ASTM C33-84).

Type of particle	Maximum content (%) (by mass) in:		
	FA	СА	
Friable Particles	3	3.0 to 10.0	
Soft Particles	-		
Coal	0.5-1	0.5 to 1.0	
Chert	-	3.0 to 8.0	